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Abstract. A numerical simulation of a two-dimensional XY model has been carried out to 
study the thermal behaviour of the magnetization pmcess and the variation of the coercive field 
as a function of the random anisotropy amplitude. The existence of two different magnetic 
regimes is evidenced a low-anisotropy regime, which is chmcterized at zero temperature by 
a power law increase of the coercive field as the anisotropy amplitude incrwes, and a regime 
for anisotropy values higher than LJlr J = 0.5, for which the system behaves as an assembly 
of quasi-independent clusters of hvo or three atoms. In this regime, the coercive field increases 
linearly with the anisotropy strength. The numerical estimntes of the power law exponenl are 
in good agreement with the heuristic predictions of lrmy and Ma. The domain wall motion 
and the spin configuration for the two anisotropy regimes have also been studied, pointing out 
the differences in the pinning process between both regimes. The thermal dependence of lhe 
cwrcive field has been obtained and fitted to an exponential law. 

1. Introduction 

In the last 20 years considerable effort has been devoted to the study of the magnetic 
properties of amorphous alloys, such as rare earth-transition metal alloys [l]. This interest 
was motivated by the anomalous magnetic properties observed experimentally in these 
alloys, such as the strong thermal and magnetic irreversibility, the absence of long-range 
order, the huge coercive fields observed at low temperature 121, and the existence of long 
relaxation times as in glasses [3]. All these facts are related to the high degree of ground 
state degeneracy and the existence of a large number of metastable states. Moreover, these 
facts are due to the microscopic disorder that has a determining influence on the magnetic 
behaviour observed for these materials. In particular, the presence of rare earth atoms 
plays an important role 141 in these alloys due to the singleion anisotropy and crystal-field 
effects, which are very important for rare earth atoms. The spin-xbit coupling and the 
exchange interaction among the atoms of the alloy propagate the effect of the singleion 
anisotropy from the rare earth atoms to the transition metal atoms, inducing a local easy 
axis of magnetization that varies from atom to atom through the crystal. 

Since the study of the magnetic behaviour of TbFQ amorphous alloys by Rhyne et al [21 
in 1974, increasing effort has been devoted to the understanding of the experimental results. 
In 1973, Harris and coworkers [5] proposed a model that gathered the main features of the 
experimental systems. This model is known as the HPZ model, and has been extensively 
studied using several techniques. The mem-field calculations performed by Hanis etal [6] 
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showed that this model can exhibit long-range order in three dimensions for low values of 
the random anisotropy. Later on, Imry and Ma [7] showed that the ferromagnetic phase 
was unstable in less than four dimensions. Finally, Aharony and Pytte [SI obtained the 
magnetic equation of state for the random anisotropy systems theoretically, which definitely 
confirmed the absence of long-range order from these systems and introduced a new method 
for analysing the experimental data. 

The high coercive fields observed at low temperature have also attracted great attention. 
Callen et al [9] studied the dependence of the coercive field on the anisotropy strength at 
0 K using mean-field techniques. Their results predicted a linear increase i n  the coercive 
field in the high-anisotropy limit. Later, Alben et al [IO] studied the dependence of the 
coercive field on the anisotropy amplitude at zero temperature by numerical simulation. 
Their results showed a discrepancy with the previous results of Callen et a1 [9] in the high- 
anisotropy limit, where the coercive field reached a saturation value close to the exchange 
field J / ~ B .  Patterson er al [ I  11 studied the coercive field dependence using the local mean- 
field approach, which confirmed the previous results of Callen eta1 [9] at zero temperature, 
and they suggested that the discrepancy observed in the high-anisotropy limit could be due 
to the metastability and the irreversibility of these systems. Recently, Saslow and Koon [ 121 
used numerical simulation to study the behaviour of a 30 random anisobopy system at zero 
temperature. Their results, showing the dependence of the coercive field on the ratio D I J  
at zero temperature, agreed with the previous results of Alben et al [IO] in the low- and 
intermediate-anisotropy regions, but they did not reproduce the maximum of  the coercive 
field observed by Alben et a1 in the high-anisotropy rexime. Instead of this maximum, 
Saslow and Koon [I21 obtained a saturation of the coercive field at a value close to 1.3J. 
They suggest that this difference may be due to the lack of convergence of the numerical 
simulations performed by Alben et al. 

The thermal behaviour of the coercive field has also been studied by different methods. 
On the one hand, experimental data obtained by Read et a1 [13], in FeZr amorphous 
alloys, and by Buschow and Kraan 1141 in Dy60Fe40, suggest an exponential law for the 
coercive field as a function of temperature. Recently, Amaudas et a1 [I51 also obtained an 
exponential decrease in the coercive field of (Gdl-,Tb,)2Cu compounds, and related this 
behaviour to a change in the nature of the thermally activated processes governing the low- 
temperature magnetic properties. On the other hand, the numerical simulations performed 
by Jayapraliash and Kirkpatrick [I61 and Denholm and Sluckin [17], and the theoretical 
calculations performed by Cresswell and Paul [18], showed a dependence of the coercive 
field on the temperature, which was qualitatively similar to an exponential decay, although 
no explicit attempt was made to fit the numerical data to an exponential law. 

The coercive field is strongly related to the magnetization process (i.e. the domain wall 
motion and domain size distribution) and to the activation volumes of the system 1191. The 
study of the spin configurations of the system as the field is changed allows us to study the 
domain wall motion and helps in the understanding of the coercive field behaviour. In this 
direction, Chudnovsky et al [20] performed a theoretical study of the ZD and 3D amorphous 
magnets with random anisotropy. As a result, these authors pointed out the existence of two 
phases depending on the magnetic field strength. The low-field phase, called a correlated 
spin glass (CSG), is characterized by large magnetic domains distributed throughout the 
sample. In the high-field regime, close to saturation, the spins are approximately oriented 
in the field direction and the phase is called a ferromagnet with a wandering axis (FWA). 
Later, Dieny and Barbara [21] studied the existence and influence of topological defects in 
the 2D XY model with random anisotropy. Their results revealed the existence of various 
topological defects that influence the magnetization process. 
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The aim of this article is to study the magnetization process of a 2D XY model with 
random anisotropy to determine the dependence of the coercive field on the anisotropy 
strength at zero temperature, and the thermal behaviour of the coercive field for different 
anisotropy strengths. These results are useful to verify the exponentlal decay observed 
experimentally, and to give some insights for a better understanding of the activation 
mechanisms at low temperature. To achieve these goals, a deeper knowledge of the 
microscopic behaviour of the system is needed. For that purpose, numerical simulation 
is a valuable tool since it  allows us to determine the magnetization of the system on the 
microscopic scale and study its evolution as the external parameters are changed. 

This a i d e  is organized as follows. In section 2, we describe the model and discuss the 
numerical methods used in the simulation. In section 3 we analyse the spin configurations 
and the domain wall motion. In section 4, the coercive field dependence on anisotropy 
strength at zero temperature is determined. Finally, in section 5, the thermal behaviour of 
the coercive field is analysed. 

2. Computational details 

In this section the numerical methods and the system geometry are described. The system 
consists of a rectangular lattice with L,  spins along the longitudinal direction and L,  < L, 
spins in the transverse direction. The numerical values are L, = 100 and L ,  = IO. 
At each of the lattice points, a two-component unit vector spin, Si, is attached, which 
forms an angle 0, with the longitudinal axis. This geometry is the most suitable for the 
visualization of the domains and the domain wall motion along the longitudinal direction. 
Free boundary conditions were imposed in  both longitudinal and transverse directions, to 
avoid the formation of vortices in the system. These vortices, observed by Dieny and 
Barbara [21], could modify the magnetization process due to the correlations induced 
between spins on opposite sides of the system. 

The energy of a random anisobopy system given by the HE model [5] is written 

where the first term is the exchange energy and the summation is extended over the nearest 
neighbours of the i spin. The second term is the random anisotropy contribution, where D 
is the anisotropy constant and ni is the random anisotropy axis. The last term i s  associated 
with the external magnetic field H; 6 is the gyromagnetic constant and p is the magnetic 
moment of the spin. 

It is worth distinguishing between two kinds of numerical simulation: the zero- 
temperature simulations, in which there is no thermal activation, and finite-temperature 
simulations, in which thermal activation is present. At zero temperature, the spins of the 
system should be in a local energy minimum. When the magnetic field is applied, the 
spin orientation changes to a new one corresponding to the nearest local energy minimum. 
However, the evolution towards the nearest minimum is such that there is no local energy 
increase since no activation occurs at 0 K. To take this fact into account, a steepest-decent 
algorithm [22] was used. This algorithm minimizes the local energy of each of the spins of 
the system by modifying the spin direction in such a way that the local energy decreases 
step by step along the direction of the energy gradient If, for a given step, the local energy 
increases, the step size is reduced until energy decreases again. The process continues until 
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the sum (over the whole lattice) of the angular differences between successive configurations 
is smaller than the given tolerance. As a result, the total energy decreases and the system 
reaches an equilibrium state, characterized by a negligible change in the total energy. At 
this point, the magnetization and the total energy are calculated. 

On the other hand, in the simulations at finite temperature, thermal activation takes place, 
which allows the energy barriers to be overcome. To take the thermal activation into account, 
the classical Monte Carlo method [23] was used. In this case the spin changes that involve 
an energy increase, A E ,  are accepted with the Boltzmann probability exp(-AE/kaT), 
where k~ is the Boltzmann constant and T is the absolute temperature. 

For the simulations of the domain wall motion, the spins in the first column were fixed, 
parallel to the magnetic field direction, and the rest of the spins were opposite to the field 
direction and free to move as the field was changed. In this way, at zero magnetic field, 
there is a domain wall in the neighbourhood of the first column. As the magnetic field is 
increased, the domain wall moves. This motion can be visualized by keeping track of the 
spins' configurations. On the other hand, there were no fixed spins in the simulations of the 
coercive field behaviour. During all the simulations, the spins were selected in a random 
way to avoid correlations between successive configurations. The constants J and p were 
chosen to simulate a typical ferromagnetic amorphous alloy [ I ]  with J = 1.035 erg 
and p = 2 Bohr magnetons. The ratio D / z J  of the anisotropy energy. D ,  to the exchange 
energy, z J ,  was varied between 0.1 and 2. The magnetic field H was applied in the 
transverse direction (i.e. perpendicular to the longest dimension L, of the system), which 
we will call the Y direction. 

3. Spin configurations and domain waI1 motion 

In this section, the equilibrium spin configuration and the domain wall motion are analysed. 
The equilibrium spin configurations at zero magnetic field are represented in figure. 1 for 
different values of the anisotropy ratio. In this figure, only a part of the spin configuration 
is represented at zero field for small anisotropy ( D / z J  = 0.1. figufe I@)), intermediate 
anisotropy ( D / z J  = 0.5, figure I@)) and high anisotropy ( D / z J  = 2, figure l(c)). The 
thick m o w  indicates the direction in which the magnetic field will be applied. As seen 
from figure l ( a ) ,  in the low-anisotropy regime ( D / z J  = O.l), there is a high degree of 
order in the system, which is only disturbed in the neighbourhood of the artificially induced 
domain wall (i.e. close to the first column of spins). However, in the high-anisotropy region 
(between D / z J  = 0.5 and D / z J  = 2, figure l (b)  and (c) ) ,  the system splits into small 
clusters (with a characteristic length of two or three atomic distances). This behaviour has 
also been found by Chudnovsky er al [ZO] using phenomenological arguments based on the 
continuous energy density functional. The low-anisotropy limit, in which the system splits 
into large domains, was called a correlated spin glass [ZO]. 

To provide a better view of the magnetization process in these systems and in particular 
of the domain wall motion, the equilibrium spin configurations for different magnetic fields 
were recorded and the magnetization profile was calculated. This profile is calculated by 
averaging the component of the spin parallel to the field, S,, in each column of the syskem 
(for each value of x ) .  The results are shown in figure 2. 

In the low-anisotropy case (figure 2(a)) at H = 150 Oe the magnetization remains 
similar to the zero-field situation, plotted in figure I @ ) .  When the field is increased, the 
magnetization starts to reverse. This occurs as a result of two competing processes: 
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Figure 1. (a) Pm of the equilibrium spin configuntion at low animtropy ( D / z J  = 0.1) and 
zero field. The magnetic field is applied in the direction given by the thick mow. (b)  The Same 
as (0)  for D / z J  = 0.5. The magnetization is broken into smdl clusters. (c )  The same as (a) 
for D l r J  = 2. The magnetization is broken into very smdl clusters of two or three Spms. 
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Figure 2. (a) The mngneuration profile along the length of the sample. for three values of the 
applied field in the low-misotropy limit ( D J z J  = 0.1). A domain wall is initially created at 
x = 0. A topological defect a p p w s  at large fields around x = 55, which corresponds to a 
2n N b l  walL (b) The magnetiwtion proiile along the length of the sample, for three values 
of the applied field for DJzJ  = 0.5. A domain wall is initially created at x = 0. (c) The 
magnetization profile along the length of the sample, for two values of the applied field in the 
high-misotropy regime (DIzJ  = 2). 
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(i) the propagation of the domain wall from the left edge of the sample, where it was 

(ii) the nucleation of other domains elsewhere in the sample. 

The relative role of the two processes depends on the ability of the domain wall to 
propagate and consequently on the amplitude of the random anisotropy. 

In figure 2(a), for H = 900 Oe, the domain wall has propagated from the abscissa x = 9 
to x = 40 but, at the same time, the magnetization has started to rotate at the opposite edge 
of the sample (between x = 60 and 100). This rotation is equivalent to the nucleation of 
a new domain at this opposite edge. When the field is further increased, the initial domain 
wall continues to propagate and the magnetization in the newly created domain continues 
to rotate towards the field direction. In between, at abscissa x = 60, a singularity in the 
magnetization profile is observed. This is a linear topologic defect characteristic of XY 
spins in which the magnetization rotates by Zz, Such linear defects have already been 
described by Dieny and Barbara [21]. When the field is increased they shrink progressively 
and their width varies proportionally to m. At very large critical fields, they collapse by 
nucleation of a vortex-antivortex pair and by a further motion of these vortices in opposite 
directions along the defect. 

In the intermediate-anisotropy case (figure 2(b)) the propagation of the domain wall from 
the left-hand edge of the sample is much less effective than in the former case. Between 
H = 0 kOe and H = 4.5 kOe, the domain wall has propagated from abscissa x = 3 
to x = 11. Meanwhile, a domain has been nucleated between x = 50 and x = 80. In 
this case the nucleation contributes more than propagation to the inversion process of the 
magnetization. The random anisotropy indeed induces local energy barriers, which prevent 
the propagation of the domain walls. These barriers constitute pinning centres for the walls. 

In the largeanisotropy case, there is no propagation of the domain walls. The reversal 
of the magnetization is nucleated everywhere in the system. The propagation mechanism 
is not operative at all in this case. 

In summary, figure 2 illustrates the competition between the propagation of domain 
walls and the nucleation of new domains in the magnetization reversal processes in random 
anisotropy systems. The weaker the random anisotropy, the easier the propagation of the 
domain walls, and therefore the propagation mechanism is preponderant. 

The magnetization curves associated with these magnetization processes are plotted 
in figure 3 for a range of fields from zero to the coercive field of the system. These 
curves were obtained starting from the same initial spin configuration as in the domain 
wall motion simulations. Then, the magnetic field was increased until the magnetization 
vanished (and the magnetic field was equal to the coercive field). As shown in figure 3(a), 
in the low-anisotropy case, a rather smooth increase in the magnetization is observed with 
a few irregularities due to the presence of some energy barriers caused by the random 
anisotropy. Because of the low-amplitude anisotropy, the magnetization has a coherent 
behaviour over rather a large length scale. This length scale can be estimated by using Imy- 
Ma phenomenological calculations ([7] and see below), which give a value of L = z J / D  in 
two dimensions. For D / z J  = 0.1 (figure 3(a)) this length scale has the value of IO lattice 
constants so the irregularities of the random anisotropy field are smeared out by averaging 
over this large scale. This leads to the smooth magnetization variation observed. 

When the amplitude of the random anisotropy is increased (figure 3(b) and (c)), more 
and more discontinuities appear, which are analogous to the Barkausen jumps known in 
ferromagnetic materials. The larger the anisotropy, the larger the number of these jumps 
and the smaller their amplitude. This feature is related to the decreasing size of the Imry-Ma 
domains as the anisotropy is increased. 

created and 
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Figure 3. (a) Pm of the magnetization ccrve in 
the low-anisotropy regime ( D / z J  = 0.1). (b) Pm 
of the magnetization curve for D / r J  = 0.5. The 
s d l  discontinuities observed me due to the irreversible 
motion of domain walls. (c )  Pm 01 the magnetization 
curve in the high.anisotroQy regime (D/rJ = 2). 

4. The coercive field at zero temperature 

Figure 4 (full circles) shows the variation of the coercive field as a function of the ratio 
D f z  J at zero temperature assuming that the spins are not able to overcome the energy 
barriers (non-tunnelling simulations). In the same figure (open circles) the dependence of 
the coercive field on the ratio D / z J  at zero temperature is shown, assuming that the spins are 
able to cross the energy barriers due to a tunnelling process, as in the calculations performed 
by Alben ef QI [IO] and Saslow and Koon [U] (tunoelling simulations). These data were 
obtained by progressively decreasing the magnetic field (applied in the Y direction) from 
the positive saturation field value H = H,, to decreasing negative fields. In this figure 
(full circles), two regimes can be distinguished. In the high-anisotropy regime, the coercive 
field increases linearly with the ratio D / z J .  At D / z J  = 0.5, there is a crossover to a new 
regime, where the coercive field shows a power law behaviour in D / z J  (inset of figure 4). 
The anisotropy value at which the crossover occurs can be estimated by using Imry-Ma 
arguments. Indeed, the coercive field of a random anisotropy system is related to the height 
of the energy barriers due to the random anisotropy. The reversal of the magnetization 
occurring at H = H, takes place when most of the spins are able to overcome these energy 
barriers. On the other hand, the magnetization behaves coherently in a length scale of 
the order of the Imry-Ma domain size, L. The resulting anisotropy energy for the whole 
domain is given by Emisotopy - DN”’ where N = L2 is the number of spins in the Imry- 
Ma domains; in our case E;lo~souopy - D L .  Following the Imry-Ma argument, this energy 
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Fiyre  4. The dependence of the coercive field on the anisotropy strength at zero tempemure. 
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is balanced by the exchange energy required to form a domain wall between two adjacent 
Imy-Ma domains. The width of this wall is comparable to the domain size L and the 
related exchange energy is given by [7] Eexdange - Z J  (r/L)’L’ - Z J .  The size L of the 
Imy-Ma domains is determined by D L  - z J ,  i.e. L - z J / D .  

The height of the anisotropy barriers is thus given by Eanisouopy - D L  - D(zJ  / D )  - 
z J .  This energy barrier may be compared with the Zeeman energy of an Imr-Ma domain 
at the coercive field, MH, - Eanisouopy. where M = p L 2  is the magnetic moment of a 
domain and p is the magnetic moment of one spin of the system. This finally leads to 
Hc - D 2 / z J .  

The results agree qualitatively with the theoretical predictions of Imry and Ma [7]. In 
the inset of figure 4, the low-anisotropy region is shown in log-log scale for the simulations, 
assuming no tunnelling of the energy barriers (full circles) and for the simulations assuming 
tunnelling of the energy barriers (open circles). The fitting to a power law is good and gives 
an exponent of 1.9f0.1 in the case of no tunnelling of the energy barriers (full circles) and 
1.4 f 0.1 in the case of tunnelling of the energy barriers (open circles). The quantitative 
difference observed in the value of the exponent may originate from two sources, firstly, 
the intrinsic error in the data, due to the simulation method, and secondly, the error in the 
numerical estimation of the exponent. The error associated with the simulation method is 
basically due to the field step used to obtain the hysteresis loops, from which the coercive 
field was calculated. In the present simulation, the field step has been chosen to minimize 
the non-equilibrium effects, so it cannot be decreased. The error in the numerical estimation 
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of the exponent originates from the intrinsic statistical errors of the points used in the linear 
regression procedure. Both sources of error may be reduced by averaging over different 
ensembles of random anisotropy axes to compensate the statistical fluctuations between 
the ensembles and by increasing the system size. As the aim of the work was to obtain 
qualitative information on the magnetization process, the average over different ensembles 
of random anisotropy axes was not carried out, to keep the computing time within reasonable 
margins. In spite of the above-mentioned sources of error, it is worth noting that the value of 
the exponent of the power law is closer to the theoretical one in the case on non-tunnelling 
simulations. This may be because the Imry-Ma arguments are classical, and do not include 
any mechanism of tunnelling of the energy barriers, so they are closer to the assumptions 
made in the non-tunnelling simulations. Below DlzJ  < 0.1 a deviation from the power 
law is observed due to the finite size of the system. In this case, the magnetic domains are 
larger than the simulated system. 

The onset of the high-anisotropy regime occurs when the characteristic domain size, 
L, is approximately equal to two or three atomic distances. At this point, the magnetic 
correlations due to the exchange interaction are lost, so the spins behave independently, 
as an assembly of very small independent clusters, and the coercive field grows linearly 
with the ratio D l z J .  The slope of the curve is related to the number of spins in the small 
clusters. To study this behaviour, we have used the Stoner-Wohlfarth model [24] for a set of 
independent particles with cubic anisotropy. The behaviour of the coercive field predicted 
by Stoner and Wohlfarth is 

where K is the cubic anisotropy constant and M,, is the saturation magnetization of the 
Imry-Ma domain. In our case, the randomness of anisotropy direction can be taken into 
account using the Nkel expression for the coercive field [25] 

H, = 0 . 6 4 K / M S , , .  (3) 

The saturation magnetization can be expressed as Np where p is the magnetic moment 
of one spin and N is the mean number of spins in the magnetic clusters. From the 
calculated slope of the full-circle curve (non-tunnelling simulations), we can obtain the 
average number N of spins in each cluster. The value obtained is between one and two 
spins, which is in good agreement with the spin configurations shown in figure I(b) and 
(c). In the high-anisotropy regime, the Imry-Ma arguments, which are derived from a 
continuous approximation, are no Ionger valid, the characteristic length L becomes smaller 
than the lattice constant and the discretization effects become critical. 

Our results are in qualitative agreement with the mean-field predictions made by Callen 
et nl [9] and Patterson et al [ 111 and agree with the results obtained by Alben et nl [lo] 
and Saslow and Koon [ 121 in the low- and intermediate-anisotropy regime. However, in the 
high-anisotropy regime ( D l z J  z 1) differences arise. In the present calculation (figure 4 ,  
full circles), the coercive field grows linearly as the anisotropy amplitude increases while, 
in the Alben et al [IO] calculations, the coercive field grows linearly up to DlzJ  = 2, 
and reaches a maximum value around D l z J  = 2.6. For higher values of the ratio D f z J ,  
the coercive field decreases to an asymptotic value close to g p B H J J  = 2. On the other 
hand, in the Saslow-Koon [12] numerical simulations, the coercive field increases with the 
ratio D / z J  and reaches a constant value close to 1.35 in the high-anisotropy regime. In 
our opinion, these discrepancies may be related to the assumption made by Alben et a1 
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[lo] and Saslow and Koon [I21 about the ability of the spins to overcome the energy 
barriers. They assume that there is a tunnelling probability equal to one, i.e. at zero 
temperature all the energy barriers can be overcome by the tunnel effect; while in the present 
calculation the spins are not allowed to pass any energy barrier (steepest-descent algorithm). 
To understand this difference better, the dependence of the coercive field on the ratio D j z  J 
at zero temperature has been calculated assuming that the spins can always overcome the 
energy barriers and reach the absolute minimum of energy. The results are also shown in 
figure 4 (open circles). Although the shape of the curve in the low-anisotropy regime is 
slightly different from the full-circle curve, the power law region and the linear region (with 
different slope) are still present. However, in the high-anisotropy limit, the coercive field 
reaches an asymptotic value close to Jj11.8. This behaviour can be understood as follows. In 
the low-anisotropy regime, each spin has only one energy minimum in its local field. Then, 
both curves are approximately the same. When D/zJ is close to 0.5, a secondary minimum 
appears and then the differences arise. In the case of figure 4 (full circles), the spins are 
not allowed to overcome the energy barriers, so the higher the anisotropy, the higher the 
energy barriers and the higher the coercive field needed to overcome these energy barriers. 
However, if all the energy barriers are overcome (open circles), the height of the energy 
barriers (which is proportional to the anisotropy amplitude) is no longer important and the 
coercive field reaches a constant value J j p ~ .  

In conclusion, the difference in the behaviour of the coercive field in the high-anisotropy 
regime may be due to the way that metastability is taken into account. If the spins are 
allowed to overcome all the energy baniers, as in [IO] and [IZ], the zero-temperature 
coercive field reaches an asymptotic value close to the exchange field because all the energy 
barriers are overcome and the system behaves, in the high-anisotropy regime, as if all the 
spins of the system were in the deepest energy minimum. On the other hand, if the spins 
are not able to overcome all the energy barriers, the system shows more metastability, since 
local energy minima are relevant and the spins are forced to pass through the intermediate 
metastable states. In consequence, the coercive field increases when the anisotropy increases. 
The assumption made by Alben ef al [IO] and Saslow and Koon [I21 about the overcoming 
of the energy barriers is equivalent to introducing a quantum tunnelling transition probability 
between the energy minima that disregards the influence of the metastability in the magnetic 
behaviour of the system. Although this quantum tunnelling transition probability might be 
important at zero temperature we think that the effect of the metastability is more important 
for the explanation of the magnetic behaviour of these systems and should be taken into 
account. 

5. The thermal behaviour of the coercive field 

Regarding the thermal behaviour of the coercive field, numerical simulations were performed 
using the classical Monte Carlo method [23] starting from saturation and decreasing the 
magnetic field (applied in the Y direction) in steps of 2000 Oe. Between each field variation 
the system was equilibrated during 1500 MCS. The results are shown in figure 5 for three 
different values of the D / z J  ratio. Some experiments [13-15] suggested an exponential 
decay of the coercive field as the temperature increases. We have attempted to fit our data 
to the exponential law H,(D/zJ.  T) = H,(D/zJ ,  O)e-"T and the results are also given in 
figure 5. The fits were in good agreement with the data, so the dependence of a on the 
ratio D / z J  was estimated. In figure 6 the results for or(D/zJ)  are shown. In spite of 
the error bars (associated with the field steps) the exponent a increases as D / z J  increases 
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Figure 5. The thermal variation of the coercive Keld 
for Uuee different values of the anisotropy amplitude. 
The solid lines represent Ihe ben1 fit of the data to an 
exponential law. 

Figure 6. The dependence of the decay rate ol on the 
mtio DlpJ  derived from the fits of the thermal variation 
of the coercive iield to an exponential decay. 

for anisotropy strength lower than 0.5 where the exponent CY reaches the maximum value. 
Then, for higher values of the ratio D l z J ,  the exponent (Y decreases smoothly as D / z J  
increases. This dependence of o on the ratio DlzJ can be understood as follows. The 
coercive field measures the difficulty of reversing the magnetization of the whole system. 
On the other hand, the height of the energy barriers, which prevents the reversal of the 
magnetization, is related to the amplitude of the random anisotropy. Relative to this height, 
the thermal activation plays a different role for low anisotropy and for high anisotropy. In 
the low-anisotropy regime, the inversion process occurs by rotation of the magnetization 
in the clusters, as it has been shown in section 2. As the anisotropy strength increases the 
characteristic cluster size decreases and the inversion is easier, because it involves fewer 
spins. Then the thermal activation facilitates the change of orientation of the magnetic 
moments. In consequence, the coercive field decreases faster for increasing D l z J  so the 
exponent (Y becomes higher. In the high-anisotropy regime, the inversion process involves 
single spin inversions, because the magnetization of the system has been broken by the 
random anisotropy into very small clusters of two or three spins. Then, as the anisotropy 
strength is increased the pinning effect caused by the random anisotropy becomes critical 
and hampers the magnetization reversal. As a result, the coercive field decreases slowly as 
the temperature increases and the exponent CI decreases. At D / z J  = 0.5, the rate (Y reaches 
a maximum, which corresponds to a crossover from the low-anisotropy regime to the high- 
anisotropy regime. This result can also be interpreted using the micromagnetic calculation 
performed by Gaunt [26], who studied the thermal variation of the coercive field for a 
magnetic material with a random array of defects, each of which has a phenomenological 
interaction potential with the domain walls. As a result, Gaunt found that the stronger this 
potential is the slower is the decrease in the coercive field as the temperature is increased. 
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